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SUMMARY

Seeking the optimal operating policy by an off-line controller for pipelines carrying natural gas has an inherent
state estimation problem associated with deviations from demand forecast. This paper presents a Kalman-filter-
based observer for the real-time estimation of deviations from the states previously obtained by an off-line
controller optimally, around an expected demand function. The observer is based on the linearized form of the
non-linear partial differential equations which are the state space representation of isothermal and unidirectional
gas flow through a pipeline. Data for the observer are produced by a dynamic simulator. The simulator and
linearized observer equations are solved using an implicit finite element method. The observer has been tested on
a pipeline subject to certain deviations from demand forecast. It converges in a short span of time.
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1. INTRODUCTION

In recent years, demand for natural gas has been significantly increasing. This situation is
acknowledged in global perspective, so that natural gas now occupies third rank in global primary
energy consumption and it is widely believed that natural gas will replace oil within a few decades.
This obviously brings about an increase in natural gas flow through pipelines from suppliers to
consumers and the construction of new transmission and distribution systems.

When transporting natural gas, the exact conditions present in the pipeline, i.e. the distribution of
pressure and flow rate, are essential information for safe and efficient operation. A method of
determining pipeline conditions is to install elaborate instruments throughout the system. Since
instrumentation is susceptible to drift and failure, state space estimation software is incorporated
within the instrumentation. Even in gas pipeline SCADA (supervisory control and data
administration) systems, real-time estimation is performed by matching real data with simulator
output.1 An observer here comes to mind as a promising mathematical tool for state space estimation.

Papers discussing and studying this estimation problem by filter-based observers have appeared
infrequently in the literature. A linear observer is used byChapmanet al.2 to estimate the pressure
profile of a gas pipeline assuming a constant flow profile along the pipe.Lappus and Schmidt3 present
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an approach built around a simulator. They propose a parallel simulation and observer scheme. The
assumption is made that the flow rate source and off-take points are exactly known. A subsequent
work4 presents a detailed discussion of the subject.Tao and Fang5 propose an optimization-based
non-linear observer for a discretized state space model of a fluid pipeline. They utilize the method of
characteristics to transform the governing equations, which are non-linear partial diifferential
equations (PDEs), into ordinary differential equations (ODEs). Then these ODEs are solved
numerically by an explicit finite difference method. However, asKumar6 stated, this approach creates
instability problems if limitations on the sampling period or time interval for simulations are
exceeded.

On the other hand, optimal control of gas pipelines is studied more than observer design for such
systems. One of the early works in this area isBateyet al.7 Wong and Larson8 have used dynamic
programming to solve limited problems such as a single compressor driving a single pipeline. A
hierarchical algorithm for the control of transient flow in a large complex pipeline system is described
by Larson and Wismer.9 Osiadacz and Bell10 have described a simplified algorithm to minimize the
fuel consumption of gas engines of a gas network. In 1988,Marqués and Morari11 presented a
quadratic programming optimizer based on a dynamic simulator.Durgut and Leblebicioglu12 tackled
the control of gas pipelines under transient flow conditions by exploiting the analytical tools of
variational calculus without further assumptions and simplifications other than those used to derive
the governing equations.

The motivation of the present work is to investigate what should be the actual states of the gas
pipeline for which the optimal operating policy is determined when the presumed demand does not
materialize. The goal of this study is to design an observer for the real-time estimation of deviations
from the states already evaluated by an off-line controller when some perturbations occur on the
demand forecast. Therefore the system is linearized around the states evaluated by optimal control.
Note that although it is also possible to design a non-linear observer, we have chosen to design a
linear observer in order to reduce the computational burden, so that in an implicit way the
information about optimal states and the prior information about the demand are utilized. In fact, our
observer may be worthwhile when an on-line controller is to be designed to keep the system
(deviating from the states calculated by an off-line controller owing to erroneous demand forecast)
within desired limits. Regarding the non-linearity and time-varying characteristics of the original
system, there exists no well-established controller for that type of system. However, for the linearized
version the controller design literature is abundant, which is in fact one of the motivations behind the
linearization methodology in this work.

In this study the mathematical model, which is the set of non-linear PDEs describing isothermal
and unidirectional gas flow through a pipeline, is treated as it is. The equations are linearized and
solved numerically using an implicit finite element method. This approach is a good way of obtaining
a finite-dimensional system reflecting the infinite-dimensional nature of the original linearized one. A
Kalman-filter-based observer is designed for these linearized equations. What the observer does is
estimate deviations from the already computed states in the case of perturbations. The observation is
initiated from an arbitrary deviation at the instant the simulation starts. The observer converges to
real states (in fact, deviations from states evaluated by an off-line controller) in a few simulation
cycles.

2. MATHEMATICAL MODEL

The mathematical model of gas flow through pipelines is described by PDEs based upon the
principles of conservation of mass and momentum, the equation of state, together with a relationship
accounting for the deviation of the gas from ideal gas behaviour. To construct this model, it is
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assumed that the flow is isothermal, unidirectional and turbulent. Model development and solution
techniques for this problem have been extensively studied for more than 30 years. Most authors agree
on describing the dynamics of the system by the equations
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Equations (1) and (2) are the equation of continuity and equation of motion for transient gas flow
respectively.

To solve the equations in the time domain, it is necessary to determine the initial conditions. At the
given instantt0 (for conveniencet0� 0), steady state flow is presumed. Hence the mass rate at the
very beginning of time,m(x, 0), is constant and known,m0. In addition, the initial pressure
distributionP(x, 0) can be calculated using steady state flow relationships. Summarizing,P(x, t) and
m(x, t) should satisfy equations (1) and (2) and the relations

m�x; 0� � m0; �3�

P�x; 0� � P0�x�; �4�

subject to boundary conditions

m�L; t� � a�t�; t5 0; �5�

P�0; t� � b�t�; t5 0; �6�

wherea(t) is known and corresponds to the time-varying demand. Under these conditions one can
obtain an optimal controllerb(t) which is the control policy for the inlet pressure so that the outlet
pressure is as close as possible to the contract pressure and the time-varying demand is satisfied via
tools of classical optimal control theory. As a result the corresponding optimal states (trajectories)
m(x, t) andP(x, t) are found. The problem is that actual value ofa(t) cannot be known beforehand.
Thus, assumingaa(t)� a(t), we can write
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The linearized forms of equations (1) and (2) are
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where m and P are as already computed in the optimal control stage. As mentioned before, this
linearization is accomplished around the optimal functionsP andm. Although linearization is done
around optimal states, it is not necessary to restrict this linearization to those particular states.
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TheD-variables then satisfy the initial and boundary conditions

Dm�x; 0� � 0; �13�

DP�x; 0� � 0; �14�

Dm�L; t� � Da�t�; �15�

DP�0; t� � Db�t�: �16�

Let us perform a finite element discretization on the linearized system:
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We will utilize the weak forms13 of equations (11) and (12):
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wherej is an arbitrary piecewise continuous function defined on [0,L].
If we perform integration by parts on (20) and (21), then
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SubstitutingDPN andDmN in (22) and (23) yields the approximate form of the linearized system:
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Up to now j(x) was arbitrary. Now we may choose it asji(x), i � 1; 2; . . . ;N , in the above
equations. If we introduce matrices
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then the system of equations (24) and (25) becomes
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Further simplification is done by defining
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We henceforward use the following notation bringing out the comprehensive expression in the
observer design stage:

_x�t� � Ax�t� � Bu�t�; x�t0� � x0; y�t� � Cx�t�; �31�
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where
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According to the notation,u(t), y(t) and x(t) denote input sequence, output sequence and state
sequence respectively,x0 is the initial state andC is the measurement matrix.

3. OBSERVER DESIGN

The observer problem consists of recursively computing an estimatez(t) of x(t) for which the error
decays to zero ast!? while the initial condition of the observed systemx0, is unknown; that is, to
design a system

_h � f �h;u; y�; h�t0� � h0 �32�

such that

lim
t!1

jx�t� ÿ h�t�j � 0 �33�

for all x0.
In this work we have designed a continuous time deterministic Kalman-filter- based observer for

our system (equation (30)) which is the linearized form of equations (1) and (2) around a particular
bias point (i.e. optimal control). Moreover, it is important to note that the linearization can be
accomplished around any bias state. We applied an approach presented inBaraset al.’s study14 to
design an observer. In the following we will briefly describe the basic idea and methodology there.

Consider the system below recapitulating equation (31):

_x�t� � Ax�t� � Bu�t�; x�0� � x0; y�t� � Cx�t�: �34�

Following Mortensen15 andHijab,16 we associate (34) with the deterministic system

_x�t� � Az�t� � Bu�t� � Nw�t�; z�0� � z0; x�t� � Cz�t� � Rv�t� �35�

and an energy cost functional
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wherew(t)2Rk andv(t)2Rp are piecewise continuous, the rank ofN is n andQ0 is p.d. A minimum
energy input triple (z�0, w*, v*), given x(s), 0 4 s4 t, is a triple that minimizesJt subject to (35)
and produces the given output recordx(s), 0 4 s4 t. The deterministic or minimum energy
estimate ofz(t), givenx(s), 0 4 s4 t, is the endpointẑ(t) of the trajectoryz*(s), 0 4 s4 t, of (35)
corresponding to a minimum energy input triple;ẑ(t)� z*( t). It can be quite easily shown thatẑ is the
solution of the Kalman filter equations

_ẑ�t� � Aẑ�t� � Bu�t� � Q�t�CT
�RRT

�

ÿ1
�x�t� ÿ Cẑ�t��; ẑ�0� � m; �37�
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; Q�0� � Q0: �38�
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It is obvious that the deterministic estimator (37), (38) is a natural candidate for an observer for the
linear systems (33) ifx(s)� y(s), 0 4 s4 t. Thus the Kalman filter deterministic observer for
system (34) is given by

_m�t� � Am�t� � Bu�t� � Q�t�CT
�RRT

�

ÿ1
�y�t� ÿ Cm�t��; m�0� � m0 � m; �39�

whereQ(t) is as given by (37).
The design parameters areQ0, N, R and . In our case

Q0 � I; R � mI2; N � ZI2N ;

wherem> 0 andZ> 0.
In Reference 16, regarding convergence of the observer, the following theorem is proved.

Theorem

The dynamical system (37), (36) is an observer for the linear control system (34) provided that (C,
A) is detectable andR is p.d., rank(N)� n� order of system (34). Thus9 constantsK> 0 andg> 0
such that

jx�t� ÿ m�t�j4Kjx0 ÿ m0je
ÿgt

; t > 0:

Note that theorem is still valid if rank(N)< n but (A, N) is controllable.

4. RESULTS AND DISCUSSION

The developed approach has been applied to a gas pipeline. The pipeline has a length of 2105 ft and a
flow diameter of 2 ft. The friction factor is constant (0�015) throughout the pipeline. The
thermodynamic data of the flowing gas are given inTable I. The system outlined above is simulated
by a finite element approach. All numerical processing (simulation, observation of the system) is
performed on 16 nodes (i.e.N� 16). The simulation or sampling interval is chosen as 5 min and is
not restricted by the speed of sound, unlike the case inTao and Fang’sstudy (i.e. they take the
sampling period as the travel time of the pressure wave across one pipeline section). The designed
observer is examined for convergence on two different cases in which the demand and optimal
control trajectory are calculated by an optimal control method.12 A third case is studied to reveal the
capacity of the observer not only around the optimal condition but also around any bias point.

Case A

In this simple case the system is subject to a constant demand of 300 MMscfd. The outlet pressure
should be around the contact pressure of 500 psi. The best operating strategy for the inlet pressure in
order to keep the outlet pressure around its given value is trivially obtained by an off-line optimal
controller. It is obvious that it should be constant during operation at a value of 668 psi. However,
one may expect some perturbations on the presumed demand. For the sake of simplicity a stepwise
change in demand was anticipated (Figure 1(b)). This brings about deviations from the states

Table I. Thermodynamic data of flowing gas

Ambient temperature 60�F
Gas gravity 0�55
Pseudocritical pressure 672 psia
Pseudocritical temperature 345�R
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computed by the off-line controller. These deviations are estimated by the presented observer
(m� 1�0 andZ� 10�0) which has feedback from the inlet pressure and outlet flow rate.

Although an observer is a known tool whose ability is proven to obtain real states andor deviations
from real states, it is prone to error. Errors of estimation are illustrated with a surface inx-axis (along
pipe), time and error space (Figures 2(a) and 2(b). The error is defined as the difference between real
states (output of simulation using real demand as boundary condition) and states via deviations
estimated by the observer and states calculated by the off-line controller. Initiating the observer from
an arbitrary deviation results in oscillations with a high amplitude at the beginning. However, these
converge to zero fast enough in a short span of time. The error surface also reveals that the error
increases at instants of change in boundary conditions and of perturbation on demand expectations.
Moreover, the state estimation for the pressure is more successful than that for the flow rate.

To examine the convergence property of the designed observer under varying amplitude of
perturbations on the same bias states, the demand is deliberately deviated from presumed constant
flow and later this deviation is amplified by two and three times as well (cases A-1, A-2 and A-3 in
Figure 3(b)). The effect of deviations on the outlet pressure is shown inFigure 3(b). Figure 4shows
how the error surface (the performance of the observer) becomes rough and starts to fluctuate with the
severity of deviation. Although the error increases, it is not so significant and the peak error is about
25% of the imposed deviation on demand and about 10% of the pressure change.

Figure 2. Case A: (a) error surface for pressure estimation; (b) error surface for flow rate estimation

Figure 1. Case A: (a) inlet and outlet pressures of pipeline; (b) demand history at outlet
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Case B

The second case is similar to the previous one in that the outlet pressure should again be around
500 psi. However, the demand forecast is different as shown inFigure 5(b)(bias curve). Referring to
this figure, after 150 min the demand will suddenly increase by one-third; this will last for 60 min
and then the flow will return to its former state. If the pipeline is controlled by an inlet pressure policy
as shown by the thick line inFigure 5(a), the outlet pressure will not seriously violate its constraint.
The control history is obtained by the algorithm described in Reference 12. On the other hand, the
demand follows another trajectory, contrary to expectations (Figure 5(b)). In order to make the
problem more realistic, the control trajectory (i.e. inlet pressure) is subjected to perturbations as
shown inFigure 5(a). Therefore the states calculated by the off-line controller will differ from the real
states. The deviations are estimated by the developed observer withm� 0�2 andZ� 2�0. The error
defined before is presented inFigures 6(a) and 6(b)for both state variables. This example shows that
avoiding abrupt deviations smooths away the error surface after initial convergence is obtained.

Case C

As stated before, the developed observer can be applied for real-time estimation not only of
deviations from the optimal state but also of deviations from any bias state. Case C investigates this
proposition. The same system but with different boundary conditions (i.e. demand and pressure
control history) is examined. At first the system is simulated for bias states (shown inFigures 7(a) and
7(b) as thick lines). The states obtained by adding the deviations estimated by the observer to the bias
states should bring out the correspondence with the real states if the proposition is true. The results
fortunately confirm the success of the observer withm� 0�2 and Z� 2�0 (Figures 7 and 8). A
comparison between real and estimated values of inlet pressure and outlet flow is presented inFigure
7; besides,Figures 8(a) and 8(b)show the error surfaces for both state variables. Since the results
provide a favourable comparison, particularly considering the convergence property of the designed
observer, one may state that it is a reliable tool for real-time state estimation problems.

The designed observer is tested in all three cases with arbitrary non-zero design parametersm and
Z. However, they are effective with regard to the convergence rate of the observer. In order to
investigate this, the last case is repeated with various pairs of values ofm andZ. The mean of the
absolute error surface for each pair is given inTables II and III. In both tables the value preceding the
arrow is for the whole surface, while that after the arrow is for the surface excluding the first five time
steps at the beginning. Analysis of the tables indicates that there are suitable ranges for the parameters
for faster convergence. However, the problem of dependence of the parameters should be noted.

Figure 3. Case A-1–2–3: (a) inlet and outlet pressures of pipeline; (b) demand history at outlet
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Since the on-line observation starts at an initial state different from the bias state and at an arbitrary
deviation, it creates oscillations before the observer converges. Excluding this period (initial state and
four simulation cycles) decreases significantly the mean of the absolute error surface.

Usually when an observer converges to the actual system, it sticks to the system and the observer
error becomes zero from that time on. However, in our cases, since we use a linearized observer for a
non-linear system of equations, one may observe certain jumps in the observer error even after it has
converged. These jumps correspond to time instants where there are sudden changes in actual
demand.

Figure 4. Error surfaces for pressure estimation in (a) Case A-1, (c) Case A-2, (e) Case A-3 and for flow rate estimation in (b)
Case A-1, (d) Case A-2, (f) Case A-3
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Figure 6. Case B: (a) error surface for pressure estimation; (b) error surface for flow rate estimation

Figure 7: CASE C: (a) bias, real and estimated pressure at inlet; (b) bias, real and estimated flow rate at outlet

Figure 5. Case B: (a) inlet and outlet pressures of pipeline; (b) demand history at outlet
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5. CONCLUSIONS

A Kalman-filter-based observer for gas pipelines has been proposed for the state estimation problem
stemming from errors in demand forecast. The observer tries to estimate deviations from the states
computed by an off-line controller.

The method is an alternative way of state estimation for gas flow. Although linearization is
accomplished around states from optimal control, it is not necessary to restrict the observer to the
estimation of states around optimal conditions. Investigations reveal that the designed observer can
be utilized not only around optimal conditions but also around any bias state.

APPENDIX: NOMENCLATURE

A cross-sectional area of pipe
a, b, c constants
B isothermal speed of sound in gas
D diameter of pipe
f friction factor
gc conversion factor for gravity
L length of pipe
m mass flow rate

Figure 8: CASE C: (a) error surface for pressure estimation,m�0�2, Z�2�0; (b) error surface for flow rate estimation,m�0�2,
Z� 2�0

Table II. Mean of absolute error surface for differentm andZ but with ratioZ=m�10 in Case C

m�4, Z�40�0 m�1�0, Z�10�0 m�0�2, Z�2�0 m�0�04, Z�0�4 m�0�02, Z�0�2

Pressure (psi) 5�86) 3�71 3�88) 2�22 2�83) 1�93 3�13) 1�90 11�0 ) 11�6
Flow (MMscf=d) 8�75) 4�59 5�71) 2�43 4�27) 1�87 5�52) 1�74 15�5 ) 12�9

Table III. Mean of absolute error for differentm andZ but with ratioZm�50 in Case C

m�4, Z�20�0 m� 1�0, Z� 5�0 m�0�5, Z�2�5 m� 0�2, Z� 1�0 m�0�04, Z�0�2

Pressure (psi) 11�1 ) 9�93 2�91) 2�01 2�94) 2�00 3�59) 2�31 3�28) 1�98
Flow (MMscfd) 16�4 ) 13�8 4�30) 1�93 4�06) 1�83 5�03) 2�11 4�86) 1�93
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P gas pressure
t time
T final time
x distance co-ordinate

REFERENCES

1. I. R. Ellul, ‘Computer-aided pipeline facilities and control systems’,Proc. NATO ASI on Underground Storage of Natural
Gas Theory and Practice, Ankara, May 1988, pp. 217–230.

2. M. J. Chapman, R. P. Jones and A. J. Pritchard,Proc. IFAC 3rd Symp. on Control of Distributed Parameter Systems, 1982,
pp. 333–337.

3. G. Lappus and G. Schmidt, ‘Supervision and control of gas transportation and distribution systems,Proc. 6th IFACIFIP
Conf. on Digital Computer Applications to Process Control, Dusseldorf, 1980.

4. G. Lappus, ‘Analysis and synthesis of state observer for large scale gas transmission systems’,Ph.D. Dissertation,
University of Munich, 1984.

5. L. W. Tao and C. Z. Fang, ‘Robust observer design for fluid pipeline’,Int. J. Control, 47, 601–613 (1988).
6. S. Kumar,Gas Production Engineering, Gulf, Houston, TX, 1987.
7. E. H. Batey, H. R. Courts and K. W. Hannah, ‘Dynamic approach to gas- pipeline analysis’,Oil Gas J., 59, 65–78 (1961).
8. P. J. Wong and R. E. Larson, ‘Optimization of natural gas pipeline systems via dynamic programming’,IEEE Trans.

Automatic Control, AC-13, 475 (1968).
9. R. E. Larson and D. A. Wismer, ‘Hierarchical control of transient flow in natural gas pipeline network’,Proc. IFAC Symp.

on Control of Distributed Parameter Systems, Banff, 1971.
10. A. Osiadacz and D. J. Bell, ‘A simplified algorithm for optimization of large scale gas networks’,Optim. control appl.

methods, 7, 95–104 (1986).
11. D. Marque´s and M. Morari, ‘On-line optimization of gas pipeline networks’,Automatica, 4, 455–469 (1988).
12. I. Durgut and K. Leblebicioglu, ‘Optimal control of gas pipelines via infinite-dimensional analysis’,Int. j. numer. methods

fluids, in press.
13. G. Strang and G. J. Fix,An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.
14. J. S. Baras, A. Bensoussan and M. R. James, ‘Dynamic observers as asymptotic limits of recursive filters: special cases’,

SIAM J. Appl. Math., 48, 1147–1158 (1988).
15. R. E. Mortensen, ‘Maximum-likelihood recursive nonlinear filtering’,J. Optim. Theory Appl., 2, 386–394 (1968).
16. O. Hijab, ‘Minimum energy estimation’,Ph.D. Dissertation, University of California, Berkeley, CA, 1980.

OBSERVER DESIGN FOR GAS PIPELINES 245


